
Dynamic Programming and Applications
Michael Schatz

Bioinformatics Lecture 2
Quantitative Biology 2014

Exact Matching Review
Where is GATTACA in the human genome?

E=183,105

These are general techniques useful for any search problem

Bowtie/BWA/SGA

Indexed Searching

BWT/FM-Index
 (~ 3GB)

Vmatch, PacBio Aligner

Binary Search

Suffix Array
(>15 GB)

Brute Force
(3 GB)

Naive

Slow & Easy

BANANA!
BAN!!
 ANA!
 NAN!
 ANA!

$BANANA!
A$BANAN!
ANA$BAN!
ANANA$B!
BANANA$!
NA$BANA!
NANA$BA!

Agenda

1.  Background on Dynamic Programming
1.  Fibonacci Sequences
2.  Longest-Increasing-Subsequences

2.  Edit Distance & Alignment
1.  Computing Edit Distances
2.  Global vs Local Alignment

3.  Applications
1.  Dynamic Time Warping
2.  BLAST

First:
A quick warm-up exercise

Fibonacci Sequence
def fib(n):
 if n == 0 or n == 1:
 return n
 else:
 return fib(n�1) + fib(n�2)

f(1) f(0)

f(2) f(1) f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

Fibonacci Sequence

1 0

1 1 1 0 1 0 1 0

3 2 2 1

2 1 1 1 1 1 1 0

8

5 3

[How long would it take for F(7)?]
[What is the running time?]

def fib(n):
 if n == 0 or n == 1:
 return n
 else:
 return fib(n�1) + fib(n�2)

Bottom-up Fibonacci Sequence
def fib(n):
 table = [0] * (n+1)
 table[0] = 0
 table[1] = 1
 for i in range(2,n+1):
 table[i] = table[i�2] + table[i�1]
return table[n]

1 2 3 4 5 0

1 1 2 3 5 0

6

8

[How long will it take for F(7)?]
[What is the running time?]

Dynamic Programming
•  General approach for solving (some) complex problems

–  When applicable, the method takes far less time than naive methods.
•  Polynomial time (O(n) or O(n2) instead of exponential time (O(2n) or O(3n))

•  Requirements:
–  Overlapping subproblems
–  Optimal substructure

•  Applications:
–  Fibonacci
–  Longest Increasing Subsequence
–  Sequence alignment, Dynamic Time Warp, Viterbi

•  Not applicable:
–  Traveling salesman problem, Clique finding, Subgraph isomorphism, …
–  The cheapest flight from airport A to airport B involves a single

connection through airport C, but the cheapest flight from airport A to
airport C involves a connection through some other airport D.

F(6)

F(5) F(4)

F(3) F(2)

F(1) F(0)

Second:
A quick interesting side problem

Longest Increasing Subsequence
•  Given a sequence of N numbers A1, A2, A3, … AN, find the

longest monotonically increasing subsequence
–  29, 6, 14, 31, 39, 78, 63, 50, 13, 64, 61, 19

•  Greedy approach (always extend the subsequence if you can):
–  29, 6, 14, 31, 39, 78, 63, 50, 13, 64, 61, 19 => 4

•  Brute force:
–  Try all possible O(2n) subsequences
 29, 6, 14, 31, 39, 78, 63, 50, 13, 64, 61, 19 => 1
 29, 6, 14, 31, 39, 78, 63, 50, 13, 64, 61, 19 => invalid
 29, 6, 14, 31, 39, 78, 63, 50, 13, 64, 61, 19 => invalid
 29, 6, 14, 31, 39, 78, 63, 50, 13, 64, 61, 19 => 2
 …

Longest Increasing Subsequence
•  Idea:

–  The solution for all N numbers depends on the solution for the first N-1
–  Look through the previous values to find the longest subsequence ending

at X such that AX < AN

•  Dynamic Programming:
–  Def: L[j] is the longest increasing subsequence ending at position j
–  Base case: L[0] = 0 Recurrence: LIS=max{L[i]}

L[j]=
i< j

A[i]<A[j]

max L[i]{ }+1

1 2 3 4 5

29 6 14 31 39

6

78

7 8 9 10

63 50 13 64

11 12

61 62

1 1 2 3 4 5 5 5 2 6 6 7

0

-

0

Index

Value

LIS

Prev 0 0 2 3 4 5 5 5 2 5 8 11 -

[What’s the LIS of 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15 ?]

13

19

3

3

Longest Increasing Subsequence
// Initialize
L[0] = 0; P[0] = 0

// Iteratively apply recurrence
for i = 1 to N

// find the best LIS to extend
bestlis = 0; bestidx = -1
for j = 1 to i

 if ((A[j] <= A[i])) && (L[j] > bestlis))
 bestlis = L[j]; bestidx = j

L[i] = bestlis + 1; P[i] = bestidx

// Scan the L array to find the overall LIS
LIS = 0
for j = 1 to N

 if (L[j] > LIS) LIS = L[j]
print “The LIS is $LIS”

1

A[1]

2 3 … i

A[2] A[3] A[i]

… j

A[j]

L[1] L[2] L[3] L[i] L[i]+1

P[1] P[2] P[3] P[j] i

… n

A[n]

0

-

0

0

[What’s the running time?]

And now for the main event!

In-exact alignment
•  Where is GATTACA approximately in the human genome?

–  And how do we efficiently find them?

•  It depends…
–  Define 'approximately'

•  Hamming Distance, Edit distance, or Sequence Similarity
•  Ungapped vs Gapped vs Affine Gaps
•  Global vs Local
•  All positions or the single 'best'?

–  Efficiency depends on the data characteristics & goals
•  Bowtie: BWT alignment for short read mapping
•  Smith-Waterman: Exhaustive search for optimal alignments
•  BLAST: Hash based homology searches
•  MUMmer: Suffix Tree based whole genome alignment

Similarity metrics
•  Hamming distance

–  Count the number of substitutions to transform one string into
another
! ! !GATTACA ! ! ! !ATTACCC!

 ! !|||X||| XX|XX|X!
! ! !GATCACA ! ! ! !GATTACA!
! ! ! !1 ! ! ! ! ! !5

•  Edit distance
–  The minimum number of substitutions, insertions, or deletions to

transform one string into another

! ! !GATTACA ! ! ! !-ATTACCC!
 ! !|||X||| ! ! ! !X|||||XX!
! ! !GATCACA ! ! ! !GATTAC-A!
! ! ! !1 ! ! ! ! ! !3 !

AGCACACA ! ACACACTA in 4 steps

AGCACACA ! (1. change G to C)
ACCACACA ! (2. delete C)
ACACACA ! (3. change A to T)!
ACACACT ! (4. insert A after T)!
ACACACTA ! done

 [Is this the best we can do?]

Edit Distance Example

AGCACACA ! ACACACTA in 3 steps

AGCACACA ! (1. change G to C)
ACCACACA ! (2. delete C)
ACACACA ! (3. insert T after 3rd C)
ACACACTA ! done

 [Is this the best we can do?]

Edit Distance Example

Reverse Engineering Edit Distance
D(AGCACACA, ACACACTA) = ?!

Imagine we already have the optimal alignment of the strings, the last column can
only be 1 of 3 options:

! ! ! !…M ! ! ! !…I ! ! ! !…D!
! ! ! !…A ! ! ! !…- ! ! ! !…A!
! ! ! !…A ! ! ! !…A ! ! ! !…-!

The optimal alignment of last two columns is then 1 of 9 possibilities

! !…MM!…IM!…DM! ! !…MI!…II!…DI! ! !…MD!…ID!…DD!
! !…CA!…-A!…CA! ! !…A-!…--!…A-! ! !…CA!…-A!…CA!
! !…TA!…TA!…-A! ! !…TA!…TA!…-A! ! !…A-!…A-!…--!

The optimal alignment of the last three columns is then 1 of 27 possibilities…
! ! ! ! !…M… ! !…I… ! !…D…!
! ! ! ! !…X… ! !…-… ! !…X…!
! ! ! ! !…Y… ! !…Y… ! !…-…!

!

Eventually spell out every possible sequence of {I,M,D}

8,6 7,6 7,7

+δ
+1i +1d

7,6 6,6 6,7

+δ
+1i +1d

7,7 6,7 6,8

+δ

+1i +1d

Recursive solution

D(AGCACACA, ACACACTA) = min{D(AGCACACA, ACACACT) + 1,
 D(AGCACAC, ACACACTA) + 1,

 D(AGCACAC, ACACACT) +δ(A, A)}
8,8

8,7 7,7 7,8

+δ +1i +1d

[What is the
running time?]

•  Computation of D is a recursive process.
–  At each step, we only allow matches, substitutions, and indels
–  D(i,j) in terms of D(i�,j�) for i� ≤ i and j� ≤ j.

Dynamic Programming

•  We could code this as a recursive function call...
...with an exponential number of function evaluations

•  There are only (n+1)x(m+1) pairs i and j
– We are evaluating D(i,j) multiple times

•  Compute D(i,j) bottom up.
–  Start with smallest (i,j) = (1,1).
–  Store the intermediate results in a table.

•  Compute D(i,j) after D(i-1,j), D(i,j-1), and D(i-1,j-1)

Recurrence Relation for D
Find the edit distance (minimum number of operations to
convert one string into another) in O(mn) time

•  Base conditions:

–  D(i,0) = i, for all i = 0,...,n
–  D(0,j) = j, for all j = 0,...,m

•  For i > 0, j > 0:

 D(i,j) = min {
 D(i-1,j) + 1, // align 0 chars from S, 1 from T
 D(i,j-1) + 1, // align 1 chars from S, 0 from T
 D(i-1,j-1) + δ(S(i),T(j)) // align 1+1 chars
 }

"

[Why do we want the min?]

Dynamic Programming Matrix
A C A C A C T A

0 1 2 3 4 5 6 7 8

A 1

G 2

C 3

A 4

C 5

A 6

C 7

A 8

[What does the initialization mean?]

Dynamic Programming Matrix
A C A C A C T A

0 1 2 3 4 5 6 7 8

A 1 0

G 2

C 3

A 4

C 5

A 6

C 7

A 8

D[A,A] = min{D[A,]+1, D[,A]+1, D[,]+δ(A,A)}

Dynamic Programming Matrix
A C A C A C T A

0 1 2 3 4 5 6 7 8

A 1 0 1

G 2

C 3

A 4

C 5

A 6

C 7

A 8

D[A,AC] = min{D[A,A]+1, D[,AC]+1, D[,A]+δ(A,C)}

Dynamic Programming Matrix
A C A C A C T A

0 1 2 3 4 5 6 7 8

A 1 0 1 2

G 2

C 3

A 4

C 5

A 6

C 7

A 8

D[A,ACA] = min{D[A,AC]+1, D[,ACA]+1, D[,AC]+δ(A,A)}

Dynamic Programming Matrix
A C A C A C T A

0 1 2 3 4 5 6 7 8

A 1 0 1 2 3 4 5 6 7

G 2

C 3

A 4

C 5

A 6

C 7

A 8

D[A,ACACACTA] = 7
-------A!
*******|!
ACACACTA !

[What about the other A?]

Dynamic Programming Matrix
A C A C A C T A

0 1 2 3 4 5 6 7 8

A 1 0 1 2 3 4 5 6 7

G 2 1 1 2 3 4 5 6 7

C 3

A 4

C 5

A 6

C 7

A 8

D[AG,ACACACTA] = 7
----AG--!
****|***!
ACACACTA !

Dynamic Programming Matrix
A C A C A C T A

0 1 2 3 4 5 6 7 8

A 1 0 1 2 3 4 5 6 7

G 2 1 1 2 3 4 5 6 7

C 3 2 1 2 2 3 4 5 6

A 4 3 2 1 2 2 3 4 5

C 5 4 3 2 1 2 2 3 4

A 6 5 4 3 2 1 2 3 3

C 7 6 5 4 3 2 1 2 3

A 8 7 6 5 4 3 2 2 2

D[AGCACACA,ACACACTA] = 2
AGCACAC-A!
|*|||||*|!
A-CACACTA !

[Can we do it any better?]

Break

Dynamic Programming Matrix
A C A C A C T A

0 1 2 3 4 5 6 7 8

A 1 0 1 2 3 4 5 6 7

G 2 1 1 2 3 4 5 6 7

C 3 2 1 2 2 3 4 5 6

A 4 3 2 1 2 2 3 4 5

C 5 4 3 2 1 2 2 3 4

A 6 5 4 3 2 1 2 3 3

C 7 6 5 4 3 2 1 2 3

A 8 7 6 5 4 3 2 2 2

D[AGCACACA,ACACACTA] = 2
AGCACAC-A!
|*|||||*|!
A-CACACTA !

[Can we do it any better?]

Global Alignment Schematic

T

S

(0,0)

(n,m)

•  A high quality alignment will stay close to the diagonal
•  If we are only interested in high quality alignments, we can skip filling in

cells that can't possibly lead to a high quality alignment
•  Find the global alignment with at most edit distance d: O(2dn)

Nathan Edwards

Sequence Similarity
•  Similarity score generalizes edit distance

–  Certain mutations are much more likely than others
•  Hydrophilic -> Hydrophillic much more likely than Hydrophillic -> Hydrophobic

–  BLOSSUM62
•  Empirically measure substitution rates among proteins that are 62% identical
•  Positive score: more likely than chance, Negative score: less likely

Edit Distance and Global Similarity
 D(i,j) = min {
 D(i-1,j) + 1,
 D(i,j-1) + 1,
 D(i-1,j-1) + δ(S(i),T(j))
 }

 s = 4x4 or 20x20 scoring matrix

 S(i,j) = max {
 S(i-1,j) - 1,
 S(i,j-1) - 1,
 S(i-1,j-1) + s(S(i),T(j))
 }

[Why max?]

Local vs. Global Alignment

•  The Global Alignment Problem tries to find the best
end-to-end alignment between the two strings

–  Only applicable for very closely related sequences

•  The Local Alignment Problem tries to find pairs of
substrings with highest similarity.

–  Especially important if one string is substantially longer
than the other

–  Especially important if there is only a distant evolutionary
relationship

Global vs Local Alignment Schematic

T

S

(0,0)

(n,m)

Max score
for local

alignment

Nathan Edwards

Global
alignment

always ends
in the corner

Local vs. Global Alignment (cont�d)

•  Global Alignment

•  Local Alignment—better alignment to find
conserved segment

 --T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
 | || | || | | | ||| || | | | | |||| |
 AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

 tccCAGTTATGTCAGgggacacgagcatgcagagac
 ||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

bioalgorithms.info

The Local Alignment Recurrence

•  The largest value of si,j over the whole edit
graph is the score of the best local alignment.

•  The recurrence:

 0
si,j = max si-1,j-1 + δ (vi, wj)
 s i-1,j + δ (vi, -)
 s i,j-1 + δ (-, wj)

Power of ZERO: there is
only this change from the
original recurrence of a
Global Alignment - since
there is only one �free ride�
edge entering into every
vertex

bioalgorithms.info

G-Local Alignments:
Searching for GATTACA

T

P

(0,0)

(n,m)

T�

Similarity P & T��≥ δ

•  Don�t �charge� for optimal alignment starting in cells (0,j)
•  Base conds: D(0,j) = 0, D(i,0) = Σk≤i s(S(k),�-�)

•  Don�t �charge� for ending alignment at end of P (but not necc. T)
•  Find cell (n,j) with edit distance ≤ δ

Nathan Edwards

Affine Gap Penalties
•  In nature, a series of k indels often come as a

single event rather than a series of k single
nucleotide events:

Normal scoring would
give the same score
for both alignments

This is more
likely.

This is less
likely.

bioalgorithms.info

Accounting for Gaps
•  Gaps- contiguous sequence of spaces in one of the rows

•  Score for a gap of length x is: -(ρ + σx)
 where ρ >0 is the gap opening penalty
 ρ will be large relative to gap extension penalty σ

–  Gap of length 1: -(ρ + σ) = -6
–  Gap of length 2: -(ρ + σ2) = -7
–  Gap of length 3: -(ρ + σ3) = -8

•  Smith-Waterman-Gotoh incorporates affine gap penalties
without increasing the running time O(mn)

Break

Dynamic Time Warp
•  Algorithm for measuring the similarity between two

sequences of numeric values that vary in time or speed
–  Computes a non-linear mapping for sequence A to sequence B
–  Many applications for video, audio, and graphics
–  Speech processing: Recognize speech patterns coping with

different speaking speeds
–  EEG processing: Identify anomalies in brain or heart activity

DTW Algorithm
•  DP Algorithm

–  Input: two time series C and Q
–  Compute the time warping matrix d

 d(0,0) = 0; d(i,0) = d(0,j) = ∞

 d(i-1, j)
d(i,j) = |ci – qj| + min d(i,j-1)

 d(i-1, j-1)

•  Warping matrix projects sequence C
to sequence Q, allowing for non-
linear contractions and expansions.

•  Rapidly compare a sequence Q to a database to find all
sequences in the database with an score above some
cutoff S.
–  Which protein is most similar to a newly sequenced one?
–  Where does this sequence of DNA originate?

•  Speed achieved by using a procedure that typically finds
�most� matches with scores > S.
–  Tradeoff between sensitivity and specificity/speed

•  Sensitivity – ability to find all related sequences
•  Specificity – ability to reject unrelated sequences

Basic Local Alignment Search Tool

(Altschul et al. 1990)

Seed and Extend
 FAKDFLAGGVAAAISKTAVAPIERVKLLLQVQHASKQITADKQYKGIIDCVVRIPKEQGV
 F D +GG AAA+SKTAVAPIERVKLLLQVQ ASK I DK+YKGI+D ++R+PKEQGV
 FLIDLASGGTAAAVSKTAVAPIERVKLLLQVQDASKAIAVDKRYKGIMDVLIRVPKEQGV

•  Homologous sequence are likely to contain a short high
scoring word pair, a seed.
–  Unlike Baeza-Yates, BLAST *doesn't* make explicit guarantees

•  BLAST then tries to extend high scoring word pairs to
compute maximal high scoring segment pairs (HSPs).
–  Heuristic algorithm but evaluates the result statistically.

BLAST - Algorithm -

•  Step 1: Preprocess Query
 Compile the short-high scoring word list from query.
 The length of query word, w, is 3 for protein scoring
 Threshold T is 13

BLAST - Algorithm -

•  Step 2: Construct Query Word Hash Table

 Query: LAALLNKCKTPQGQRLVNQWIKQPLMD

 W
ord list

Hash Table

BLAST - Algorithm -

•  Step 3: Scanning DB
 Identify all exact matches with DB sequences

Query Word Neighborhood
Word list

Sequences in DB

Step 1 Step 2

Sequence 1

Sequence 2

BLAST - Algorithm -

•  Step 4 (Search optimal alignment)
 For each hit-word, extend ungapped alignments in both directions.
 Let S be a score of hit-word

•  Step 5 (Evaluate the alignment statistically)
 Stop extension when E-value (depending on score S) become less than

threshold. The extended match is called High Scoring Segment Pair.

 E-value = the number of HSPs having score S (or higher) expected to occur by chance.
 ! Smaller E-value, more significant in statistics
 Bigger E-value , by chance

 E[# occurrences of a string of length m in reference of length L] ~ L/4m

BLAST E-values

The expected number of HSPs with the score at least S is :

 E = K*n*m*e-�S
 K, � are constant depending on model

 n, m are the length of query and sequence

The probability of finding at least one such HSP is:

 P = 1 - eE

 ! If a word is hit by chance (E-value is bigger),
 P become smaller.

The distribution of Smith-Waterman local alignment scores between two

random sequences follows the Gumbel extreme value distribution

Very Similar Sequences

Query: HBA_HUMAN Hemoglobin alpha subunit
Sbjct: HBB_HUMAN Hemoglobin beta subunit

Score = 114 bits (285), Expect = 1e-26
Identities = 61/145 (42%), Positives = 86/145 (59%), Gaps = 8/145 (5%)

Query 2 LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF------DLSHGSAQV 55
 L+P +K+ V A WGKV + E G EAL R+ + +P T+ +F F D G+ +V
Sbjct 3 LTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV 60

Query 56 KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA 115
 K HGKKV A ++ +AH+D++ + LS+LH KL VDP NF+LL + L+ LA H
Sbjct 61 KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK 120

Query 116 EFTPAVHASLDKFLASVSTVLTSKY 140
 EFTP V A+ K +A V+ L KY
Sbjct 121 EFTPPVQAAYQKVVAGVANALAHKY 145

Quite Similar Sequences

Query: HBA_HUMAN Hemoglobin alpha subunit
Sbjct: MYG_HUMAN Myoglobin

Score = 51.2 bits (121), Expect = 1e-07,
Identities = 38/146 (26%), Positives = 58/146 (39%), Gaps = 6/146 (4%)

Query 2 LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF------DLSHGSAQV 55
 LS + V WGKV A +G E L R+F P T F F D S +
Sbjct 3 LSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASEDL 62

Query 56 KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA 115
 K HG V AL + + L+ HA K ++ + +S C++ L + P
Sbjct 63 KKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSKHPG 122

Query 116 EFTPAVHASLDKFLASVSTVLTSKYR 141
 +F +++K L + S Y+
Sbjct 123 DFGADAQGAMNKALELFRKDMASNYK 148

Not similar sequences

Query: HBA_HUMAN Hemoglobin alpha subunit
Sbjct: SPAC869.02c [Schizosaccharomyces pombe]

 Score = 33.1 bits (74), Expect = 0.24
 Identities = 27/95 (28%), Positives = 50/95 (52%), Gaps = 10/95 (10%)

Query 30 ERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAH 89
 ++M ++P P+F+ +H + + +A AL N ++DD+ +LSA D
Sbjct 59 QKMLGNYPEV---LPYFNKAHQISL--SQPRILAFALLNYAKNIDDL-TSLSAFMDQIVV 112

Query 90 K---LRVDPVNFKLLSHCLLVTLAAHLPAEF-TPA 120
 K L++ ++ ++ HCLL T+ LP++ TPA
Sbjct 113 KHVGLQIKAEHYPIVGHCLLSTMQELLPSDVATPA 147

Blast Versions

Program! Database! Query!

BLASTN" Nucleotide" Nucleotide"
BLASTP" Protein" Protein"

BLASTX" Protein" Nucleotide translated in
to protein"

TBLASTN" Nucleotide translated in
to protein" Protein"

TBLASTX" Nucleotide translated in
to protein"

Nucleotide translated in
to protein"

NCBI Blast
•  Nucleotide Databases

–  nr: All Genbank
–  refseq: Reference

organisms
–  wgs: All reads

•  Protein Databases
–  nr: All non-redundant

sequences
–  Refseq: Reference

proteins

BLAST Exercise
>whoami
TTGATGCAGGTATCTGCGACTGAGACAATATGCA
ACAGTTGAATGAATCATAATGGAATGTGCACTCT
AACCAGCCAATTTGATGCTGGCTGCAGAGATGC
AAGATCAAGAGGTGACACCTGCTCTGAAGAAAG
CACAGTTGAACTGCTGGATCTGCAACTACAGCA
GGCACTCCAGGCACCAAGACAACATCTTTTACA
CCAGCAAACATGTGGATTGATATCTCCTAACAGC
AGTGATTAACAGAGACGACTGCAGGATTTGCTTC
CACAAACAAAAT

Parameters

•  Larger values of w increases the number of
neighborhood words, but decreases the number of
chance matches in the database.
–  Increasing w decreases sensitivity.

•  Larger values of T decrease the overall execution
time, but increase the chance of missing a MSP having
score ≥ S.
–  Increases T decreases the sensitivity

•  Larger values of S increase the specificity. The value
of S is affected by changes in the expectation value
parameter.

Sequence Alignment Summary
•  Distance metrics:

–  Hamming: How many substitutions?
–  Edit Distance: How many substitutions or indels?
–  Sequence Similarity: How similar (under this model of similarity)?

•  Techniques
–  Seed-and-extend: Anchor the search for in-exact using exact only
–  Dynamic Programming: Find a global optimal as a function of its parts
–  BWT Search: implicit DFS of SA/ST

•  Sequence Alignment Algorithms: Pick the right tool for the job
–  Smith-Waterman: DP Local sequence alignment
–  BLAST: Homology Searching
–  Bowtie/BWA/Novoalign: short read mapping

