Dynamic Programming and Applications Michael Schatz

Bioinformatics Lecture 2
Quantitative Biology 2014

Exact Matching Review

Where is GATTACA in the human genome?
$\mathrm{E}=183,105$
Brute Force
$(3 \mathrm{~GB})$
BANANA
BAN
ANA
NAN
ANA

Naive
Slow \& Easy

Suffix Array (>15 GB)	
6	\$
5	A\$
3	ANA\$
1	ANANA\$
0	BANANA\$
4	NA\$
2	NANA\$
Vmatch, PacBio Aligner	
Binary Search	

BWT/FM-Index
$(\sim 3 G B)$
\$BANANA
A\$BANAN
ANA\$BAN
ANANA\$B
BANANAS
NA\$BANA
NANA\$BA

Bowtie/BWA/SGA
Indexed Searching

These are general techniques useful for any search problem

Agenda

I. Background on Dynamic Programming
I. Fibonacci Sequences
2. Longest-Increasing-Subsequences
2. Edit Distance \& Alignment
I. Computing Edit Distances
2. Global vs Local Alignment
3. Applications
I. Dynamic Time Warping
2. BLAST

First:

A quick warm-up exercise

Fibonacci Sequence

Fibonacci Sequence

```
def fib(n):
if n == 0 or n == l:
        return n
    else:
    return fib(n-l) + fib(n-2)
```


[How long would it take for $F(7)$?]
[What is the running time?]

Bottom-up Fibonacci Sequence

```
def fib(n):
    table = [0]* (n+I)
    table[0] = 0
    table[I] = I
    for i in range(2,n+I):
        table[i] = table[i-2] + table[i-1]
return table[n]
```

[How long will it take for $F(7)$?] [What is the running time?]

Dynamic Programming

- General approach for solving (some) complex problems
- When applicable, the method takes far less time than naive methods.
- Polynomial time $\left(O(n)\right.$ or $O\left(n^{2}\right)$ instead of exponential time $\left(O\left(2^{n}\right)\right.$ or $\left.O\left(3^{n}\right)\right)$
- Requirements:
- Overlapping subproblems
- Optimal substructure
- Applications:
- Fibonacci
- Longest Increasing Subsequence
- Sequence alignment, Dynamic Time Warp,Viterbi
- Not applicable:
- Traveling salesman problem, Clique finding, Subgraph isomorphism, ...
- The cheapest flight from airport A to airport B involves a single connection through airport C, but the cheapest flight from airport A to airport C involves a connection through some other airport D.

Second:

A quick interesting side problem

Longest Increasing Subsequence

- Given a sequence of N numbers $A_{1}, A_{2}, A_{3}, \ldots A_{N}$, find the longest monotonically increasing subsequence
- 29, 6, I4, 3I, 39, 78, 63, 50, I3, 64, 6I, I9
- Greedy approach (always extend the subsequence if you can):
$-\underline{29}, 6,14, \underline{31}, \underline{39}, \underline{78}, 63,50,13,64,61,19 \quad=>4$
- Brute force:
- Try all possible $O\left(2^{n}\right)$ subsequences

$$
\begin{array}{ll}
\underline{29}, 6,14,31,39,78,63,50,13,64,61,19 & =>~ I \\
\underline{29}, \underline{6}, 14,31,39,78,63,50,13,64,61,19 & =>\text { invalid } \\
\underline{29}, 6,14,31,39,78,63,50,13,64,61,19 & =>\text { invalid } \\
\underline{29}, 6,14, \underline{31}, 39,78,63,50,13,64,61,19 & =>2
\end{array}
$$

Longest Increasing Subsequence

- Idea:
- The solution for all N numbers depends on the solution for the first $\mathrm{N}-\mathrm{I}$
- Look through the previous values to find the longest subsequence ending at X such that $A_{X}<A_{N}$
- Dynamic Programming:
- Def: $L[i]$ is the longest increasing subsequence ending at position j
- Base case: $L[0]=0 \quad$ Recurrence: $L[j]=\max _{i<j}\{L[i]\}+1 \quad L I S=\max \{L[i]\}$

[What's the LIS of 0,8,4, I2,2, I0,6, I4, I,9,5, I3,3,II,7,I5 ?]

Longest Increasing Subsequence

// Initialize

$$
\mathrm{L}[0]=0 ; \mathrm{P}[0]=0
$$

// Iteratively apply recurrence for $\mathrm{i}=\mathrm{I}$ to N
// find the best LIS to extend bestlis = 0; bestidx $=-\mathrm{I}$
for $\mathrm{j}=\mathrm{I}$ to i

if $((A[j]<=A[i])) \& \&(L[j]>$ bestlis $))$
bestlis $=\mathrm{L}[\mathrm{j}]$; bestid $\mathrm{x}=\mathrm{j}$
$\mathrm{L}[\mathrm{i}]=$ bestlis $+\mathrm{I} ; \mathrm{P}[\mathrm{i}]=$ bestidx
// Scan the L array to find the overall LIS

$$
\text { LIS }=0
$$

for $\mathrm{j}=\mathrm{I}$ to N
if (L[j] > LIS) LIS = L[i]
print "The LIS is \$LIS"
[What's the running time?]

And now for the main event!

In-exact alignment

- Where is GATTACA approximately in the human genome?
- And how do we efficiently find them?
- It depends...
- Define 'approximately'
- Hamming Distance, Edit distance, or Sequence Similarity
- Ungapped vs Gapped vs Affine Gaps
- Global vs Local
- All positions or the single 'best'?
- Efficiency depends on the data characteristics \& goals
- Bowtie: BWT alignment for short read mapping
- Smith-Waterman: Exhaustive search for optimal alignments
- BLAST: Hash based homology searches
- MUMmer: Suffix Tree based whole genome alignment

Similarity metrics

- Hamming distance
- Count the number of substitutions to transform one string into another

GATTACA	ATTACCC
$\|\|\|\mathrm{X}\|\|\|$	$\mathrm{XX}\|\mathrm{XX}\| \mathrm{X}$
GATCACA	GATTACA
1	5

- Edit distance
- The minimum number of substitutions, insertions, or deletions to transform one string into another

GATTACA	-ATTACCC
$\|\|\|\mathrm{X}\|\|\|$	$\mathrm{X}\|\|\|\|\mid \mathrm{XX}$
GATCACA	GATTAC-A
1	3

Edit Distance Example

AGCACACA \rightarrow ACACACTA in 4 steps

AGCACACA \rightarrow (I. change G to $C)$
ACCACACA \rightarrow (2. delete C)
ACACACA \rightarrow (3. change A to T)
ACACACT \rightarrow (4. insert A after T)
ACACACTA \rightarrow done

[Is this the best we can do?]

Edit Distance Example

AGCACACA \rightarrow ACACACTA in 3 steps

AGCACACA \rightarrow (I. change G to $C)$
ACCACACA \rightarrow (2. delete C)
ACACACA \rightarrow (3. insert T after $3^{\text {rd }} \mathrm{C}$)
ACACACTA \rightarrow done

[Is this the best we can do?]

Reverse Engineering Edit Distance $\mathrm{D}(\mathrm{AGCACACA}, ~ A C A C A C T A)=$?

Imagine we already have the optimal alignment of the strings, the last column can only be I of 3 options:

...M	...I	...D
....
	...A	

The optimal alignment of last two columns is then I of 9 possibilities

| ...MM | ..IM | ..DM | ...MI | ...II | ...DI | ...MD | ...ID |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ...DD

The optimal alignment of the last three columns is then I of 27 possibilities...

...M...	...I...	\ldots. ...
...X...	..-...	\ldots.....
...Y...	...Y...	$\ldots-. .$.

Eventually spell out every possible sequence of $\{I, M, D\}$

Recursive solution

- Computation of D is a recursive process.
- At each step, we only allow matches, substitutions, and indels
$-D(i, j)$ in terms of $D\left(i^{\prime}, j^{\prime}\right)$ for $i^{\prime} \leq i$ and $j^{\prime} \leq j$.
$D(A G C A C A C A, A C A C A C T A)=\min \{D(A G C A C A C A, ~ А С А С А С Т)+I$, D(AGCACAC, АСАСАСТА) +1 , $D($ AGCACAC, ACACACT) $+\delta(A, A)\}$

[What is the running time?]

Dynamic Programming

- We could code this as a recursive function call... ...with an exponential number of function evaluations
- There are only $(\mathrm{n}+\mathrm{l}) \times(\mathrm{m}+\mathrm{l})$ pairs i and j
- We are evaluating $D(i, j)$ multiple times
- Compute D(i,j) bottom up.
- Start with smallest $(\mathrm{i}, \mathrm{j})=(\mathrm{I}, \mathrm{I})$.
- Store the intermediate results in a table.
- Compute $\mathrm{D}(\mathrm{i}, \mathrm{j})$ after $\mathrm{D}(\mathrm{i}-\mathrm{I}, \mathrm{j}), \mathrm{D}(\mathrm{i}, \mathrm{j}-\mathrm{I})$, and $\mathrm{D}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})$

Recurrence Relation for D

Find the edit distance (minimum number of operations to convert one string into another) in $\mathrm{O}(\mathrm{mn})$ time

- Base conditions:

$$
\begin{aligned}
& -D(i, 0)=i, \text { for all } i=0, \ldots, n \\
& -D(0, j)=j, \text { for all } j=0, \ldots, m
\end{aligned}
$$

- For $\mathrm{i}>0, \mathrm{j}>0$:

$$
D(i, j)=\min \{
$$

$$
\begin{array}{ll}
D(i-I, j)+I, & / / \text { align } 0 \text { chars from } S, I \text { from } T \\
D(i, j-I)+I, & / / \text { align I chars from } S, 0 \text { from } T \\
D(i-I, j-I)+\delta(S(i), T(j)) / / \text { align } I+I \text { chars }
\end{array}
$$

Dynamic Programming Matrix

		\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{A}
	0	1	2	3	4	5	6	7	8
\mathbf{A}	1								
\mathbf{G}	2								
\mathbf{C}	3								
\mathbf{A}	4								
\mathbf{C}	5								
\mathbf{A}	6								
\mathbf{C}	7								
\mathbf{A}	8								

[What does the initialization mean?]

Dynamic Programming Matrix

		\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{A}
	0	1	2	3	4	5	6	7	8
\mathbf{A}	1	0							
\mathbf{G}	2								
\mathbf{C}	3								
\mathbf{A}	4								
\mathbf{C}	5								
\mathbf{A}	6								
\mathbf{C}	7								
\mathbf{A}	8								

$$
\mathrm{D}[\mathrm{~A}, \mathrm{~A}]=\min \{\mathrm{D}[\mathrm{~A},]+1, \mathrm{D}[, \mathrm{~A}]+1, \mathrm{D}[,]+\delta(\mathrm{A}, \mathrm{~A})\}
$$

Dynamic Programming Matrix

		\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{A}
	0	$\mathbf{1}$	$\mathbf{2}$	3	4	5	6	7	8
\mathbf{A}	$\mathbf{1}$	0	$\mathbf{1}$						
\mathbf{G}	2								
\mathbf{C}	3								
\mathbf{A}	4								
\mathbf{C}	5								
\mathbf{A}	6								
\mathbf{C}	7								
\mathbf{A}	8								

$$
\mathrm{D}[\mathrm{~A}, \mathrm{AC}]=\min \{\mathrm{D}[\mathrm{~A}, \mathrm{~A}]+1, \mathrm{D}[, \mathrm{AC}]+1, \mathrm{D}[, \mathrm{~A}]+\delta(\mathrm{A}, \mathrm{C})\}
$$

Dynamic Programming Matrix

		\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{A}
	0	1	2	3	4	5	6	7	8
\mathbf{A}	1	0	1	2					
\mathbf{G}	2								
\mathbf{C}	3								
\mathbf{A}	4								
\mathbf{C}	5								
\mathbf{A}	6								
\mathbf{C}	7								
\mathbf{A}	8								

$D[A, A C A]=\min \{D[A, A C]+1, D[, A C A]+1, D[, A C]+\delta(A, A)\}$

Dynamic Programming Matrix

		\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{A}
	$\underline{0}$	$\underline{1}$	$\underline{2}$	$\underline{3}$	$\underline{4}$	$\underline{5}$	$\underline{6}$	$\underline{7}$	8
\mathbf{A}	1	0	$\mathbf{1}$	2	3	4	5	6	$\underline{7}$
\mathbf{G}	2								
\mathbf{C}	3								
A	4								
\mathbf{C}	5								
A	6								
\mathbf{C}	7								
\mathbf{A}	8								

$D[A, A C A C A C T A]=7$

[What about the other A?] ACACACTA

Dynamic Programming Matrix

		\mathbf{A}	C	A	C	A	C	\mathbf{T}	A
	$\underline{0}$	$\underline{1}$	$\underline{2}$	$\underline{3}$	$\underline{4}$	5	6	7	8
A	$\mathbf{1}$	0	1	2	3	$\underline{4}$	5	6	7
\mathbf{G}	2	1	1	2	3	4	$\underline{5}$	$\underline{6}$	$\underline{7}$
C	3								
A	4								
C	5								
A	6								
C	7								
A	8								

$D[A G, A C A C A C T A]=7$

$$
\begin{aligned}
& ----A G-- \\
& * * * * \mid * * * \\
& \text { АСАСАСТА }
\end{aligned}
$$

Dynamic Programming Matrix

		\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{A}
	$\underline{0}$	$\mathbf{1}$	2	3	4	5	6	7	8
\mathbf{A}	1	$\underline{0}$	1	2	3	4	5	6	7
\mathbf{G}	2	$\underline{1}$	1	2	3	4	5	6	7
\mathbf{C}	3	2	$\underline{1}$	2	2	3	4	5	6
\mathbf{A}	4	3	2	$\underline{1}$	2	2	3	4	5
\mathbf{C}	5	4	3	2	$\underline{1}$	2	2	3	4
\mathbf{A}	6	5	4	3	2	$\underline{1}$	2	3	3
\mathbf{C}	7	6	5	4	3	2	$\underline{1}$	$\underline{2}$	3
\mathbf{A}	8	7	6	5	4	3	2	2	$\underline{2}$

D[AGCACACA,ACACACTA $]=2$

$$
\begin{aligned}
& \text { AGCACAC-A } \\
& |*|||||*| \\
& \text { A-САСАСТА }
\end{aligned}
$$

[Can we do it any better?]

Break

Dynamic Programming Matrix

		\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{A}
	$\underline{0}$	$\mathbf{1}$	2	3	4	5	6	7	8
\mathbf{A}	1	$\underline{0}$	1	2	3	4	5	6	7
\mathbf{G}	2	$\underline{1}$	1	2	3	4	5	6	7
\mathbf{C}	3	2	$\underline{1}$	2	2	3	4	5	6
\mathbf{A}	4	3	2	$\underline{1}$	2	2	3	4	5
\mathbf{C}	5	4	3	2	$\underline{1}$	2	2	3	4
\mathbf{A}	6	5	4	3	2	$\underline{1}$	2	3	3
\mathbf{C}	7	6	5	4	3	2	$\underline{1}$	$\underline{2}$	3
\mathbf{A}	8	7	6	5	4	3	2	2	$\underline{2}$

D[AGCACACA,ACACACTA $]=2$

$$
\begin{aligned}
& \text { AGCACAC-A } \\
& |*|||||*| \\
& \text { A-САСАСТА }
\end{aligned}
$$

[Can we do it any better?]

Global Alignment Schematic

A high quality alignment will stay close to the diagonal

- If we are only interested in high quality alignments, we can skip filling in cells that can't possibly lead to a high quality alignment
- Find the global alignment with at most edit distance d: $\mathrm{O}(2 \mathrm{dn})$

Nathan Edwards

Sequence Similarity

- Similarity score generalizes edit distance
- Certain mutations are much more likely than others
- Hydrophilic -> Hydrophillic much more likely than Hydrophillic -> Hydrophobic
- BLOSSUM62
- Empirically measure substitution rates among proteins that are 62% identical
- Positive score: more likely than chance, Negative score: less likely

Edit Distance and Global Similarity

$$
\begin{aligned}
D(i, j)=\min \{ & \\
& D(i-I, j)+I, \\
& D(i, j-I)+I, \\
& \quad D(i-I, j-I)+\delta(S(i), T(j))
\end{aligned}
$$

$s=4 \times 4$ or 20×20 scoring matrix

$$
\begin{aligned}
S(i, j)=\max \{ & \\
& S(i-I, j)-I, \\
& S(i, j-I)-I, \\
& S(i-I, j-I)+s(S(i), T(j))
\end{aligned}
$$

Local vs. Global Alignment

- The Global Alignment Problem tries to find the best end-to-end alignment between the two strings
- Only applicable for very closely related sequences
- The Local Alignment Problem tries to find pairs of substrings with highest similarity.
- Especially important if one string is substantially longer than the other
- Especially important if there is only a distant evolutionary relationship

Global vs Local Alignment Schematic

Nathan Edwards

Local vs. Global Alignment (cont d)

- Global Alignment

- Local Alignment-better alignment to find conserved segment
tccCAGTTATGTCAGgggacacgagcatgcagagac |||||||||||
aattgccgccgtcgttttcagCAGTTATGTCAGatc

The Local Alignment Recurrence

- The largest value of $s_{i, j}$ over the whole edit graph is the score of the best local alignment.
- The recurrence:

$$
s_{i, j}=\max \left\{\begin{array}{l}
0 \\
s_{i-1, j-1}+\delta\left(v_{i}, w_{j}\right) \\
s_{i-1, j}+\delta\left(v_{i},-\right) \\
s_{i, j-1}+\delta\left(-, w_{j}\right)
\end{array}\right.
$$

Power of ZERO: there is only this change from the original recurrence of a Global Alignment - since there is only one "free ride" edge entering into every vertex

G-Local Alignments: Searching for GATTACA

- Don' t "charge" for optimal alignment starting in cells $(0, j)$

Base conds: $D(0, j)=0, D(i, 0)=\Sigma_{k \leq i} s\left(S(k),{ }^{-}-{ }^{\prime}\right)$
Don' t "charge" for ending alignment at end of P (but not necc.T)

- Find cell (n, j) with edit distance $\leq \delta$

Nathan Edwards

Affine Gap Penalties

- In nature, a series of k indels often come as a single event rather than a series of k single nucleotide events:

ATA__GC
ATATTGC

Normal scoring would
This is more likely.
give the same score for both alignments

ATAG_GC
AT_GTGC

This is less
likely.

Accounting for Gaps

- Gaps- contiguous sequence of spaces in one of the rows
- Score for a gap of length x is: $-(\rho+\sigma x)$ where $\rho>0$ is the gap opening penalty
ρ will be large relative to gap extension penalty σ
- Gap of length $\mathrm{I}:-(\rho+\sigma)=-6$
- Gap of length 2: $-(\rho+\sigma 2)=-7$
- Gap of length 3: $-(\rho+\sigma 3)=-8$
- Smith-Waterman-Gotoh incorporates affine gap penalties without increasing the running time $\mathrm{O}(\mathrm{mn})$

Break

Dynamic Time Warp

- Algorithm for measuring the similarity between two sequences of numeric values that vary in time or speed
- Computes a non-linear mapping for sequence A to sequence B
- Many applications for video, audio, and graphics
- Speech processing: Recognize speech patterns coping with different speaking speeds
- EEG processing: Identify anomalies in brain or heart activity

DTW Algorithm

- DP Algorithm
- Input: two time series C and Q
- Compute the time warping matrix d

$$
\begin{aligned}
& d(0,0)=0 ; d(i, 0)=d(0, j)=\infty \\
& d(i, j)=\left|c_{i}-q_{j}\right|+\min \left\{\begin{array}{l}
d(i-I, j) \\
d(i, j-I) \\
d(i-I, j-I)
\end{array}\right.
\end{aligned}
$$

- Warping matrix projects sequence to sequence Q, allowing for non-
 linear contractions and expansions.

Basic L_ocal Alignment Search Tool

- Rapidly compare a sequence Q to a database to find all sequences in the database with an score above some cutoff S.
- Which protein is most similar to a newly sequenced one?
- Where does this sequence of DNA originate?
- Speed achieved by using a procedure that typically finds "most" matches with scores > S.
- Tradeoff between sensitivity and specificity/speed
- Sensitivity - ability to find all related sequences
- Specificity - ability to reject unrelated sequences

Seed and Extend

```
FAKDFLAGGVAAAISKTAVAPIERVKLLLQVQHASKQITADKQYKGIIDCVVRIPKEQGV
F D +GG AAA+SKTAVAPIERVKLLLQVQ ASK I DK+YKGI+D ++R+PKEQGV
FLIDLASGGTAAAVSKTAVAPIERVKLLLQVQDASKAIAVDKRYKGIMDVLIRVPKEQGV
```

- Homologous sequence are likely to contain a short high scoring word pair, a seed.
- Unlike Baeza-Yates, BLAST *doesn't* make explicit guarantees
- BLAST then tries to extend high scoring word pairs to compute maximal high scoring segment pairs (HSPs).
- Heuristic algorithm but evaluates the result statistically.

BLAST - Algorithm -

- Step I: Preprocess Query

Compile the short-high scoring word list from query. The length of query word, w, is 3 for protein scoring Threshold T is 13

BLAST - Algorithm -

- Step 2: Construct Query Word Hash Table

Query: LAALLNKCKTPQGQRLVNQWIKQPLMD

BLAST - Algorithm -

- Step 3: Scanning DB

Identify all exact matches with DB sequences

BLAST - Algorithm -

- Step 4 (Search optimal alignment) For each hit-word, extend ungapped alignments in both directions.
Let S be a score of hit-word
- Step 5 (Evaluate the alignment statistically)

Stop extension when E-value (depending on score S) become less than threshold. The extended match is called High Scoring Segment Pair.

E-value $=$ the number of HSPs having score S (or higher) expected to occur by chance.
\rightarrow Smaller E-value, more significant in statistics
Bigger E-value, by chance
$E[\#$ occurrences of a string of length m in reference of length $L] \sim L / 4^{m}$

BLAST E-values

The expected number of HSPs with the score at least S is :

$$
\mathrm{E}=\mathrm{K}^{*} \mathrm{n}^{*} \mathrm{~m}^{*} \mathrm{e}^{-\lambda \mathrm{s}}
$$

K, λ are constant depending on model n, m are the length of query and sequence

The probability of finding at least one such HSP is:
$P=I-e^{E}$
\rightarrow If a word is hit by chance (E -value is bigger), P become smaller.

The distribution of Smith-Waterman local alignment scores between two random sequences follows the Gumbel extreme value distribution

Very Similar Sequences

Query: HBA_HUMAN Hemoglobin alpha subunit
Sbjct: HBB_HUMAN Hemoglobin beta subunit
Score $=114$ bits (285), Expect $=1 e-26$
Identities $=61 / 145$ (42\%), Positives $=86 / 145$ (59\%), Gaps $=8 / 145$ (5\%)
Query 2 LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF------DLSHGSAQV 55
Sbjct 3 LTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV 60
Query 56 KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA 115K HGKKV A ++ +AH+D++ + LS $+L H \quad K L$ VDP NF+LL $+L+L A H$
Sbjct 61 KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK 120
Query 116 EFTPAVHASLDKFLASVSTVLTSKY 140
EFTP V A+ K +A V+ L KY
Sbjct 121 EFTPPVQAAYQKVVAGVANALAHKY 145

Quite Similar Sequences

Query: HBA_HUMAN Hemoglobin alpha subunitSbjct: MYG_HUMAN Myoglobin
Score $=51.2$ bits (121), Expect $=1 e-07$,
Identities $=38 / 146$ (26\%) , Positives $=58 / 146$ (39\%) , Gaps $=6 / 146$ (4\%)
Query 2 LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF------DLSHGSAQV 55
Sbjct 3 LSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASEDI 62
Query 56 KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA 115
$\mathrm{K} \mathrm{HG} \mathrm{V} \mathrm{AL}+\quad+\mathrm{L}+\mathrm{HA} \mathrm{K} \mathrm{++}$ + +S C++ L +P
Sbjct 63 KKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSKHPG 122
Query 116 EFTPAVHASLDKFLASVSTVITSKYR 141
$+F \quad+++K$ L $+S Y+$
Sbjct 123 DFGADAQGAMNKALELFRKDMASNYK 148

Not similar sequences

```
Query: HBA_HUMAN Hemoglobin alpha subunit
Sbjct: SPAC869.02c [Schizosaccharomyces pombe]
    Score = 33.1 bits (74), Expect = 0.24
    Identities = 27/95 (28%), Positives = 50/95 (52%), Gaps = 10/95 (10%)
Query 30 ERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAH }8
    ++M ++P P+F+ +H + + +A AL N ++DD+ +LSA D
Sbjct 59 QKMLGNYPEV---LPYFNKAHQISL--SQPRILAFALLNYAKNIDDL-TSLSAFMDQIVV 112
Query 90 K---LRVDPVNFKLLSHCLLVTLAAHLPAEF-TPA 120
    K L++ ++ ++ HCLL T+ LP++ TPA
Sbjct 113 KHVGLQIKAEHYPIVGHCLLSTMQELLPSDVATPA 147
```


Blast Versions

Program	Database	Query
BLASTN	Nucleotide	Nucleotide
BLASTP	Protein	Protein
BLASTX	Protein	Nucleotide translated in to protein
TBLASTN	Nucleotide translated in to protein	Protein
TBLASTX	Nucleotide translated in to protein	Nucleotide translated in to protein

NCBI Blast

- Nucleotide Databases
- nr:All Genbank
- refseq: Reference organisms
- wgs:All reads
- Protein Databases
- nr:All non-redundant sequences
- Refseq: Reference proteins

BLAST Exercise

$>$ whoami
TTGATGCAGGTATCTGCGACTGAGACAATATGCA ACAGTTGAATGAATCATAATGGAATGTGCACTCT AACCAGCCAATTTGATGCTGGCTGCAGAGATGC AAGATCAAGAGGTGACACCTGCTCTGAAGAAAG CACAGTTGAACTGCTGGATCTGCAACTACAGCA GGCACTCCAGGCACCAAGACAACATCTTTTACA CCAGCAAACATGTGGATTGATATCTCCTAACAGC AGTGATTAACAGAGACGACTGCAGGATTTGCTTC CACAAACAAAAT

Parameters

- Larger values of w increases the number of neighborhood words, but decreases the number of chance matches in the database.
- Increasing w decreases sensitivity.
- Larger values of T decrease the overall execution time, but increase the chance of missing a MSP having score \geq S.
- Increases T decreases the sensitivity
- Larger values of S increase the specificity. The value of S is affected by changes in the expectation value parameter.

Sequence Alignment Summary

- Distance metrics:
- Hamming: How many substitutions?
- Edit Distance: How many substitutions or indels?
- Sequence Similarity: How similar (under this model of similarity)?
- Techniques
- Seed-and-extend:Anchor the search for in-exact using exact only
- Dynamic Programming: Find a global optimal as a function of its parts
- BWT Search: implicit DFS of SA/ST
- Sequence Alignment Algorithms: Pick the right tool for the job
- Smith-Waterman: DP Local sequence alignment
- BLAST: Homology Searching
- Bowtie/BWA/Novoalign: short read mapping

